Amplifying Side-Channel Attacks with Techniques from Block Cipher Cryptanalysis

نویسندگان

  • Raphael C.-W. Phan
  • Sung-Ming Yen
چکیده

We introduce the notion of amplified side-channel attacks, i.e. the application of block cipher cryptanalysis techniques to amplify effects exploitable by side-channel attacks. Such an approach is advantageous since it fully exploits the special characteristics of each technique in situations where each thrives the most. As an example, we consider the integration of block cipher cryptanalysis techniques into a particular type of side-channel attack, the differential fault attack (DFA). In more detail, we apply the DFA on the AES key schedule or on intermediate states within the AES and then exploit distinguishers based on Square attacks and impossible differential cryptanalysis to cover the remaining rounds. The use of techniques from conventional differential cryptanalysis in DFAs is not new; however, to the best of our knowledge, more advanced differential-like attack techniques have so far not been applied in collaboration with DFA. Further, while previous DFA attacks can only be mounted if faults are induced in the last or first (but with more restrictions) few rounds, our attacks alternatively show that even when faults are induced into some middle rounds, the DFA attacks still work, complementing existing results in literature; and thus showing that DFA attacks work regardless of where faults are induced. This is of importance because redundancy is a costly countermeasure against DFA and thus it is vital to study which rounds have to be protected. We hope that this completes the picture on the applicability of DFAs to block ciphers, and motivates thoughts into applying other advanced block cipher cryptanalysis techniques into other types of side-channel attacks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impossible Differential Cryptanalysis of Reduced-Round Midori64 Block Cipher (Extended Version)

Impossible differential attack is a well-known mean to examine robustness of block ciphers. Using impossible differ- ential cryptanalysis, we analyze security of a family of lightweight block ciphers, named Midori, that are designed considering low energy consumption. Midori state size can be either 64 bits for Midori64 or 128 bits for Midori128; however, both vers...

متن کامل

Algebraic Side-Channel Attacks

In 2002, algebraic attacks using overdefined systems of equations have been proposed as a potentially very powerful cryptanalysis technique against block ciphers. However, although a number of convincing experiments have been performed against certain reduced algorithms, it is not clear wether these attacks can be successfully applied in general and to a large class of ciphers. In this paper, w...

متن کامل

Combining Algebraic and Side-Channel Cryptanalysis against Block Ciphers

This paper introduces a new type of cryptanalysis against block ciphers, denoted as algebraic side-channel attacks. In these attacks, we first write the target block cipher as a system of low degree equations. But since directly solving this system is generally hard, we additionally provide it with physical information. As a consequence, the algebraic cryptanalysis that was previously conjectur...

متن کامل

New Fixed Point Attacks on GOST2 Block Cipher

GOST block cipher designed in the 1970s and published in 1989 as the Soviet and Russian standard GOST 28147-89. In order to enhance the security of GOST block cipher after proposing various attacks on it, designers published a modified version of GOST, namely GOST2, in 2015 which has a new key schedule and explicit choice for S-boxes. In this paper, by using three exactly identical portions of ...

متن کامل

Efficient Hamming weight-based side-channel cube attacks on PRESENT

Side-channel cube attack (SCCA) is a powerful cryptanalysis technique that combines side-channel attack and cube attack. This paper proposes several advanced techniques to improve the Hamming weight-based SCCA (HW-SCCA) on the block cipher PRESENT. The new techniques utilize non-linear equations and an iterative scheme to extract more information from leakage. The new attacks need only 2 chosen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006